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Introdu
tion Algorithm Results Con
lusionMotivation
Crab 
avity for CERN luminosity upgradeTwo bun
hes form a angle near IP to prevent parasiti
 
ollisions.Without a 
rab 
avity, it leads to geometri
al luminosity loss due to de
reasedinter-se
tional area.A 
rab 
avity de
e
ts the beams transversely to 
ompensate the geometri
 luminosityloss.0Pi
ture from Calaga et al. LHC 
rab-
avity aspe
ts and strategy
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tion Algorithm Results Con
lusionCrab 
rossing design evolutionCrab 
rossing 
on
ept is �rst proposed by R. Palmer at 1988 for LC.

0K. Ohmi, Crab 
rossing at KEKB, Beam-beam workshop, SLAC 2007



Introdu
tion Algorithm Results Con
lusionCrab 
rossing design evolutionCrab 
rossing 
on
ept is �rst proposed by R. Palmer at 1988 for LC.
Su

essfully produ
ed in Feb. 2007 at KEKB.

0K. Ohmi, Crab 
rossing at KEKB, Beam-beam workshop, SLAC 2007
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lusionCrab 
avity design evolution

Fo
using on 
ompa
t 
avity models.0R. Calaga, Crab Crossing For LHC Upgrade, SRF July 2011
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lusionCrab 
avity design evolution

We are doing simulations with the ODU-JLab model.
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lusionCrab 
avity spe
i�
ations

0R. Calaga, Crab Crossing For LHC Upgrade, SRF July 2011
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lusionGoals
To study the possible negative e�e
ts of a 
rab 
avity on the tune footprint,dynami
 aperture and emittan
e of the beam.



Introdu
tion Algorithm Results Con
lusionGoals
To study the possible negative e�e
ts of a 
rab 
avity on the tune footprint,dynami
 aperture and emittan
e of the beam.Interpolate the �eld at any pointCal
ulate 
rab 
avity ki
ksEvaluate the impa
t by 
omparing simulation results with or without 
rab
avity
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lusionCal
ulate the parallel bar 
rab 
avity ki
ksEM �elds in a TEM resonan
e stru
ture areE(x; y ; �; t) = E(x; �) 
os�2�y� � sin(!t);B(x; y ; �; t) = E(x; �)Z0 � ŷ sin�2�y� � 
os(!t)where Z0 =p�=�.Assuming two in�nite rods parallel to the y-axis with uniform 
harge density q, and
rossing the (x; �) plane at x = �a; � = 0. The potential is given byV (x; �) = q4��0 ln r2�r2+ ! ;where r2� = (x � a)2 + �2; r2+ = (x + a)2 + �2 :The ele
tri
 �elds areEx (x; �) = ��V�x = � aq��0 " x2 � a2 � �2r2�r2+ #E�(x; �) = ��V�� = � aq��0 " 2x�r2�r2+ #
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lusionCal
ulate the parallel bar 
rab 
avity ki
ksUsing Lorentz's EOM dp=dt = 1p0 q(E+ v� B) and v = �
�̂ we obtainEOM of a parti
le with longitudinal distan
e z from the syn
hronous parti
ledpxdt = qp0 Ex(x ; �
t + z) 
os(ky) sin�! �t � z�
��dpydt = � qp0 �
Z0 E�(x ; �
t + z) sin � 2�y� � 
os �! �t � z�
��dpzdt = � qp0 E�(x ; �
t + z) 
os(ky)sin �! �t � z�
�� :The referen
e parti
le passes through the 
avity gap in timet 2 nT0 + (�L�=2�
; L�=2�
), where L� is the 
avity gap width along the �dire
tion.No available analyti
al formula for 
rab 
avity ki
ks. We have to obtain it vianumeri
al integration.The a
tual �elds in use are simulated based on CSD Mi
rowave Studio'snumeri
al model of the 
avity.Symmetry of �eld 
omponents along z axisEx Ey Ez Hx Hy HzS S A A A S
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tion Algorithm Results Con
lusionInterpolation algorithmInterpolation is a method of 
onstru
ting new data points within the range of adis
rete set of known data points. This algorithm is a slight variation ofquadrati
 polynomial interpolation.Polynomial interpolationThe idea is that any n+ 1 known data points uniquely determine a n-thpolynomial. The value at any other points 
an be predi
ted by the polynomial.Given a dis
rete set of points, we usually pi
k the n+ 1 nearest points to thepoint of interpolation to 
onstru
t the polynomial.Pros:FastEasy to implementCons:Only has C 0 
ontinuity (does not have 
ontinuous derivatives)Large os
illations near endpoints (therefore interpolation order > 5 israrely used)
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lusionInterpolation algorithm
Variation of 3D quadrati
 interpolationNote: This algorithm requires uniform grid spa
ingalong ea
h dire
tion.1. Cover the domain with 
ubes with a side length of2� grid spa
ing.2. Pi
k the 20 points on the verti
es and edges.Dis
ard points at the 
enter of fa
es and in the 
enterof the 
ube.3. f (x ; y ; z) =P20i=1 
iNi (x ; y ; z ; �i ; �i ; �i)where 
i are found fromf (xi ; yi ; zi ) = 
iNi (xi ; yi ; zi ; �i ; �i ; �i) and Ni 's arepolynomial fun
tions whi
h 
hange from site to site.
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lusionInterpolation algorithmVariation of 3D quadrati
 interpolation- Nodes at the verti
es:Node i 1 3 5 7 13 15 17 19�i -1 1 1 -1 -1 1 1 -1�i -1 -1 1 1 -1 -1 1 1�i -1 -1 -1 -1 1 1 1 1Ni = 18(1+ �ix)(1+ �iy)(1+ �i z)(�2+ �ix + �iy + �i z)-Nodes on the yz-plane:Node i 2 6 14 18�i 0 0 0 0�i -1 1 -1 1�i -1 -1 1 1Ni = 14(1� x2)(1 + �iy)(1 + �i z)
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tion Algorithm Results Con
lusionInterpolation algorithmVariation of 3D quadrati
 interpolation-Nodes on the xy -plane:Node i 4 8 16 20�i 1 -1 1 -1�i 0 0 0 0�i -1 -1 1 1Ni = 14(1 + �ix)(1� y 2)(1 + �iz)-Nodes on the xz-plane:Node i 9 10 11 12�i -1 1 1 -1�i -1 -1 1 1�i 0 0 0 0Ni = 14(1 + �ix)(1 + �iy)(1� z2)
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tion Algorithm Results Con
lusionInterpolation results in 
omparison with Mathemati
a interpolation
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lusionSimulation
BB Simulation with 
rab 
avityTra
king parti
les through a model of SPS with all linear fo
using �elds andnonlinear �elds.A 
rab 
avity will �rst be tested at SPS.Crab 
avity paremeters:energy(GeV) voltage(GV) frequen
y(MHz) radius(m)26 13� 10�4 400 0.433Looking for impa
ts on tune footprint, dynami
 aperture and emittan
e.
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lusionTM mode: tune footprint

Figure: Tune footprint with 
rab 
avity on (red) and o� (green).
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lusionTM mode: dynami
 apertureDynami
 aperture spe
i�es the maximal range below whi
h parti
les are stable.Parti
les outside of the dynami
 aperture will be lost.

Figure: Dynami
 aperture under TM mode (identi
al with or without 
rab 
avity).
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lusionTM mode: emittan
e

Figure: Emittan
e along x-axis up to 105turns with 
rab 
avity on (red) and o�(green). Figure: Emittan
e along y-axis up to 105turns with 
rab 
avity on (red) and o�(green).
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tion Algorithm Results Con
lusionCon
lusionInterpolationSmoothMat
hes tabulated dataClose to Mathemati
a quadrati
 interpolation.SimulationTM mode (at 26 GeV):small footprint 
hangedynami
 aperture not a�e
tedsome emittan
e 
hange, but bounded in the same vi
inityThe e�e
t of the 
rab 
avities on the beam is small seen from this simulation.Future workSimulation of the TEM mode 
avity at various energies of SPS and LHC.
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